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Abstract. The direct reconstruction of the isospin I = 0 amplitudes is discussed under the assumption
that the I = 1 amplitudes are known and that a sufficient number of independent np observables have
been measured at a centre-of-mass angle θ. We show that at least one observable measured at angle π−θ is
necessary in order to determine the I = 0 amplitudes, including the phase relative to the I = 1 amplitudes.
Special cases at θ = 0, π/2 and π are also discussed.

1 Introduction

The present paper is devoted to the direct reconstruction
of the elastic scattering amplitudes for the isospin I = 0
state using known pp and np amplitudes and observables.
The direct reconstruction is a complementary method to
the phase shift analysis (PSA). A PSA is able to recon-
struct amplitudes from an incomplete set of data compen-
sating the lack of observables by smooth angular depen-
dences and model-dependent ingredients, e.g. one-pion ex-
change (OPE). The model-dependent part becomes more
important with growing energy. A PSA provides the ab-
solute phases of the amplitudes at all scattering angles
θ, fixed by OPE contributions for long-range (peripheric)
interactions. Therefore, the PSA procedure automatically
determines the phase between the pp and np complex am-
plitudes. The PSA takes into account contributions of elec-
tromagnetic interactions and determines pure nuclear or
total amplitudes. The isosinglet amplitudes can then be
directly found.

This is not the case in the direct reconstruction of am-
plitudes. A direct amplitude reconstruction is carried out
at a given angle and energy where it requires a complete
set of data. The importance of the method is in fact that
it is entirely model independent whatever the energy may
be. It therefore provides an important check of the PSA.
Via the reconstruction, measured observables for pp or
np scattering provide the absolute values of amplitudes
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and their relative phases for the respective systems. How-
ever, the I = 0 amplitudes are still not determined. The
I = 1 amplitudes from pp scattering contain electromag-
netic contributions which must be subtracted. In addition
there is an undetermined relative phase between the pp
and np amplitudes. To find this relative phase, which en-
ables calculation of the isosinglet amplitudes, it is neces-
sary to measure at least one np experiment at the angle
π − θ as discussed in this paper.

A direct amplitude reconstruction is possible only if
the pp and np data base is sufficient or ‘complete’, i.e. if at
least 9 spin-dependent quantities and the differential cross
section have been measured at one energy and angle. Up to
now, all direct reconstructions of np scattering amplitudes
at a centre-of-mass (c.m.) angle θ have been performed
without consideration of the connections with observables
at the conjugate angle π − θ. We do not address the more
general question of np amplitude reconstruction from two
‘incomplete’ sets of experiments, one at θ, the other at
π − θ. Interesting ideas on the subject may be found in
[1].

Since 1990 abundant pp data from experiments per-
formed at PSI, LAMPF and SATURNE II have been avail-
able. Direct I = 1 amplitude reconstructions have been
performed [2–4] at several energies and over a large range
of scattering angles.

The np situation has improved in recent years, in par-
ticular since the mid-1980’s when polarized neutron beams
became available at a number of laboratories. This allowed
measurements of spin-dependent observables in free elastic
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np scattering. The np differential cross sections are fairly
well known below 0.8 GeV. Unfortunately at higher ener-
gies, measurements at c.m. angles between 30◦ and 120◦
are almost non-existent; accurate results exist only in the
small angle and large angle regions. Therefore, even the
dσ/dΩ data sets required for amplitude reconstructions
are incomplete. Direct np amplitude reconstructions which
are possible at various energies and angles or through pro-
posed new measurements are summarized below:

– Analyses of SATURNE data at five energies from 0.84
to 1.1 GeV and at three or four c.m. angles less than
90◦ have been completed [5].

– Combined LAMPF and SATURNE II results form an
overdetermined set of np observables at 0.8 GeV for
two angles [5].

– New accurate PSI data in the energy region from 0.260
to 0.535 GeV have been measured in the angular range
60◦–160◦ [6]. These data will permit np amplitude
analyses over most of that angular region.

– The first ∆σL(np) experiments above 1.1 GeV have
been performed at the DUBNA synchrophasotron-
nuclotron complex using a new polarized target [7].
Measurements of spin dependent np observables close
to 180◦ up to 4 GeV are foreseen. These are needed for
forward angle amplitude analysis.

– Spin-dependent total cross section data which permit
a partial amplitude reconstruction are now available
at 16.2 MeV [8].

In this paper we discuss in detail the requirements for
an unambiguous determination of I = 0 amplitudes by a
direct amplitude reconstruction. The NN amplitude for-
malism is reviewed in Sect. 2, Sect. 3 discusses amplitude
reconstruction in the forward direction, and Sect. 4 han-
dles the reconstruction for the general case.

2 The NN scattering matrix and amplitude
symmetries

The nucleon-nucleon elastic scattering formalism, ampli-
tude representation and four-spin-index notation from [9]
are used throughout this paper. Assuming parity conser-
vation, time reversal invariance and isospin invariance, we
write the scattering matrix in the form

M(~kf ,~ki) =
1
2
[(a + b) + (a − b)(~σ1 · ~n)(~σ2 · ~n)

+(c + d)(~σ1 · ~m)(~σ2 · ~m) + (c − d)(~σ1 ·~l)(~σ2 ·~l)
+e(~σ1 + ~σ2) · ~n)] , (2.1)

where a, b, c, d and e are five complex scattering ampli-
tudes which are functions of energy and c.m. scattering
angle θ. As the energy is constant throughout the present
article, it is omitted. ~σ1 and ~σ2 are the Pauli 2 × 2 ma-
trices, ~ki and ~kf are unit vectors in the direction of the
incident and scattered particles, respectively, and

~n =
(~ki × ~kf )

|~ki × ~kf |
, ~l =

(~kf + ~ki)

|~kf + ~ki|
, ~m =

(~kf − ~ki)

|~kf − ~ki|
. (2.2)

Table 1. Symmetry properties of the NN scattering ampli-
tudes

I = 0 amplitudes I = 1 amplitudes

a0(θ) = a0(π − θ) a1(θ) = −a1(π − θ)
b0(θ) = c0(π − θ) b1(θ) = −c1(π − θ)
c0(θ) = b0(π − θ) c1(θ) = −b1(π − θ)
d0(θ) = −d0(π − θ) d1(θ) = d1(π − θ)
e0(θ) = −e0(π − θ) e1(θ) = e1(π − θ)

We can write the scattering matrices for pp, np and nn as

M(~kf ,~ki) =
M0

4
[1 − (~τ1 · ~τ2)] +

M1

4
[3 + (~τ1 · ~τ2)] (2.3)

where the isosinglet and isotriplet scattering matrices, M0
and M1, respectively, each have the form given in (2.1). ~τ1
and ~τ2 are the nucleon isospin matrices. The corresponding
amplitudes a to e acquire an isospin index 0 or 1. More
specifically we have

M(pp → pp) = M(nn → nn) = M1 (2.4a)
M(np → np) = M(pn → pn) = (M1 + M0)/2 (2.4b)
M(np → pn) = M(pn → np) = (M1 − M0)/2 (2.4c)

As well as giving (2.4c), the generalized Pauli principle
for nucleons also yields other symmetry conditions for the
amplitudes a to e which connect amplitudes for a given
isospin state at angles θ and π − θ. These are summa-
rized in Table 1. Obtaining the forward-backward relation
between the amplitudes b and c is not immediately obvi-
ous. [9] gives the relations between the various amplitudes
used in many different amplitude representations. The re-
lations between amplitudes b and c are most easily seen
when one takes the spin singlet-triplet representation of
the scattering matrix, rewrites those amplitudes using the
{a, b, c, d, e} representation given in (2.1) and applies the
results expressed in (2.4b) and (2.4c).

3 Isosinglet amplitude reconstruction:
forward angles

The scattering matrix simplifies at forward (θ = 0) and
backward (θ = π) angles. The amplitudes in (2.1) then
satisfy

e(0) = 0, a(0) − b(0) = c(0) + d(0) (3.1a)
e(π) = 0, a(π) − b(π) = c(π) − d(π) (3.1b)

The subscripts for the amplitudes are omitted as the equa-
tions apply for the general NN case. Three complex am-
plitudes remain for each of pp and np scattering. Three
independent total cross sections may be measured in the
forward direction by pp and np transmission experiments

σtot = σ0tot +σ1tot(~PB · ~PT )+σ2tot(~PB ·~ki)(~PT ·~ki) (3.2)
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where ~PB and ~PT are the beam and target polarizations
and σ0tot is the spin-independent total cross section. The
terms σ1tot and σ2tot are related to the total cross sec-
tion differences ∆σT and ∆σL, measurable with appropri-
ately polarized initial nucleons. They are linear functions
of three independent non-vanishing amplitude combina-
tions via the optical theorems:

σtot = (2π/k)=m[a(0) + b(0)] (3.3a)
−∆σT = 2σ1tot = (4π/k)=m[c(0) + d(0)] (3.3b)
−∆σL = 2(σ1tot + σ2tot)

= (4π/k)=m[c(0) − d(0)] . (3.3c)

Values of =m[a(0) + b(0)] for I = 0 can be deduced
from the known spin-independent pp and np total cross
sections. The imaginary parts of the spin-dependent am-
plitudes =mc(0) and =md(0) for I = 0 were determined
[10] at PSI (8 energies) and at SATURNE II (10 energies).
In this case, ∆σT and ∆σL for pp data were fitted by PSA
and the corresponding measured np data were used.

To reconstruct the real parts of the forward scattering
amplitudes one needs to determine at least three other ob-
servables for pp as well as for np scattering. No scattering
observable can actually be measured at exactly 0◦, in fact
no np observables have been measured at angles smaller
than 10◦ [10].

For the pp system data are available as low as 4◦.
Therefore the nuclear real parts of the pp forward am-
plitudes can be reliably extrapolated to θ = 0◦ using a
PSA procedure, which represents the best fit to the angu-
lar dependence of any measured observable.

For the np system the use of forward observables may
be replaced by measurements of the differential cross sec-
tion and two non-vanishing two-spin parameters at θ = π.
In the intermediate energy domain the best choice of ob-
servables includes spin correlation parameters since they
are large in the backward angle region.

As an example, consider the observables Aoonn(π) and
Aookk(π) provided by PSI and SATURNE II measure-
ments [11]. Since e(0) = e(π) = 0, we have

dσ

dΩ
(π) =

1
2
(|a|2 + |b|2 + |c|2 + |d|2) (3.4)

dσ

dΩ
Aoonn(π) =

1
2
(|a|2 − |b|2 − |c|2 + |d|2) (3.5)

dσ

dΩ
Aookk(π) = <e a∗d + <e b∗c (3.6)

Using simple relations of the type

|a + d|2 = |a|2 + |d|2 + 2<e a∗d (3.7)

together with (3.1b) we find

dσ

dΩ
(1 + Aookk) = |b + c|2 (3.8)

dσ

dΩ
(1 − Aookk − 2Aoonn) = |b − c|2 (3.9)

dσ

dΩ
(1 − Aookk + 2Aoonn) = |2d − b − c|2 (3.10)

where all quantities are calculated at θ = π. Using the
specified experiments the three remaining real parts of the
np amplitudes are obtained, but with independent sign
ambiguities for each amplitude combination and, there-
fore, we get eight possible solutions.

The ambiguities may be removed in several different
manners. First, the sign of the ratio

ρ = <e (a(0) + b(0))/=m (a(0) + b(0)) (3.11)

of pp and np forward scattering amplitudes known from
measurements at small angles may sometimes be used.
Any independent experiment measured at θ = π decreases
the number of ambiguities. Supplementary observables
were used in this manner in [11] where the np observables
Konno Kok′′ko could be fairly well estimated at θ = π be-
low 0.6 GeV. At higher energies other observables may be
more easily accessible.

4 Isosinglet amplitude reconstruction:
general case

Let us express the np scattering amplitudes at an angle θ
in terms of the isospin 0 and 1 amplitudes (see (2.3)):

anp ≡ 1
2
(a0 + a1)

bnp ≡ 1
2
(b0 + b1)

cnp ≡ 1
2
(c0 + c1)

dnp ≡ 1
2
(d0 + d1)

enp ≡ 1
2
(e0 + e1) . (4.1)

Using Table 1 we find the following relations between
the np amplitudes at angle π − θ and the np and pp am-
plitudes at angle θ:

anp(π − θ) = anp − a1

bnp(π − θ) = cnp − c1

cnp(π − θ) = bnp − b1

dnp(π − θ) = −dnp + d1

enp(π − θ) = −enp + e1 . (4.2)

Suppose complete sets of pp and np elastic scattering
observables have been measured at the angle θ and the
scattering amplitudes for both systems have been directly
reconstructed, each up to an overall phase. Assume that
in both cases the overall phase was the phase of the corre-
sponding amplitude e, denoted by ε1 for pp and εnp for np
scattering. This means that for each amplitude we know
its absolute value and its phase relative to e1 or enp, e.g.
for the amplitude a1 we have determined |a1| and α1 −ε1.
To reconstruct the isosinglet amplitudes we have to find
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the relative phase εnp − ε1 between the pp and the np
amplitudes.

We will show that to find εnp − ε1 with one discrete
ambiguity we need to measure one np experiment at the
angle π − θ. Two such experiments will provide εnp − ε1
unambiguously.

Denote
x ≡ tan

εnp − ε1

2
(4.3)

Then
sin(εnp − ε1) =

2x

1 + x2 (4.4)

and

cos(εnp − ε1) =
1 − x2

1 + x2 . (4.5)

As a first example for finding εnp − ε1 let us consider
the np differential cross-section at the angle π − θ. Using
(4.2) this may be written as

dσnp

dΩ
(π − θ) =

1
2
(|anp − a1|2 + |bnp − b1|2

+|cnp − c1|2 + |dnp − d1|2 + |enp − e1|2)
=

dσnp

dΩ
(θ) +

dσpp

dΩ
(θ) − <e (anpa

∗
1 + bnpb

∗
1

+cnpc
∗
1 + dnpd

∗
1 + enpe

∗
1) . (4.6)

To isolate the isosinglet-isotriplet phase difference and
express quantities in terms of the individual reconstructed
pp and np amplitudes and phases it is convenient to write

<e anpa
∗
1 = |anp| |a1| cos(αnp − α1) . (4.7)

We can then expand

cos(αnp − α1) = cos(αnp − εnp − (α1 − ε1) + εnp − ε1)
= cos(αnp − εnp − (α1 − ε1)) cos(εnp − ε1)

− sin(αnp − εnp − (α1 − ε1)) sin(εnp − ε1)

= cos(αnp − εnp − (α1 − ε1))
1 − x2

1 + x2

− sin(αnp − εnp − (α1 − ε1))
2x

1 + x2 (4.8)

and similar expressions for other real parts in (4.6). This
will transform (4.6) to a quadratic equation in x from
which one obtains εnp − ε1 with one discrete ambiguity.

Instead of the np differential cross section one may
measure any other observable Onp at π − θ. Indeed, using
(4.6–4.8) we may write

dσnp(π − θ)
dΩ

Onp(π − θ)

=
[
dσnp

dΩ
(θ) +

dσpp

dΩ
(θ) + C1

1 − x2

1 + x2 + C2
2x

1 + x2

]

×Onp(π − θ) . (4.9)

A second expression for dσ
dΩ Onp is obtained by writing it

directly as a quadratic form of the scattering amplitudes

dσnp(π − θ)
dΩ

Onp(π − θ) = C3 + C4
1 − x2

1 + x2

+C5
2x

1 + x2 . (4.10)

In these last two equations C1, C2, C3, C4 and C5 are ap-
propriate polynomials of the pp and np amplitudes known
from the direct reconstruction at angle θ. Equating the
right-hand sides of (4.9) and (4.10) we again get a qua-
dratic equation for x from which it is easy to determine
εnp − ε1 with at most one discrete ambiguity. Information
from a second np experiment at π − θ will remove the
ambiguity.

Note that the knowledge from any two different exper-
iments measured at π − θ can be expressed as a system
of two linear equations for cos(εnp − ε1) and sin(εnp − ε1)
which may be solved instead of the two quadratic equa-
tions for x. In practice, however, the experimental values
are subject to statistical errors and the method of least
squares should be used to insure compatibility between
the sin and cos values.

In the special case of θ = π/2 we have e0(π/2) = 0 and
2enp(π/2) = e1(π/2) from Table 1. In this case εnp−ε1 = 0
and a direct reconstruction of the pp and np amplitudes
also provides the isospin I = 0 amplitudes without any
additional measurement.

5 Conclusions

This paper gives for the first time a comprehensive pre-
scription how to determine the relative phase of the I = 0
and I = 1 components of the NN scattering matrix at
any angle in a direct amplitude reconstruction. So far, this
subject has been treated incompletely because of the lack
of adequate np data. In the past few years, extensive np
scattering data have become available, renewing interest
in the problem. The procedure requires that a complete
set of observables be available for both the pp and np sys-
tems. The complete sets of experiments at an angle θ allow
direct reconstruction of the pp and np scattering ampli-
tudes independently, but are not sufficient to determine
the pure isosinglet amplitudes. One extra np experiment
at the angle π − θ is necessary to calculate the isosinglet
amplitudes with one discrete ambiguity; two experiments
at π−θ are sufficient to get an unambiguous solution. The
knowledge of the isosinglet amplitudes then allows the np
amplitudes at the angle π − θ to be determined.

Complete sets of observables which are appropriate
for use in such a direct amplitude reconstruction are now
available below 2.7 GeV pp kinetic energy and below 1.1
GeV for np scattering. Experiments are proposed at JINR-
Dubna which may extend the energy ranges up to 4 GeV.
Measurements in the forward direction check the validity
of dispersion relations and at high energies the behaviour
of amplitudes, as predicted by QCD, may be tested.
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